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ABSTRACT
In the multi-agent systems community, dependence theory
and game theory are often presented as two alternative per-
spectives on the analysis of social interaction. Up till now no
research has been done relating these two approaches. The
unification presented provides dependence theory with the
sort of mathematical foundations which still lacks, and shows
how game theory can incorporate dependence-theoretic con-
siderations in a fully formal manner.
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Economics, Theory

Keywords
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1. INTRODUCTION
The present paper brings together two independent re-

search threads in the study of social interaction within mul-
tiagent systems (MAS): game theory [16] and dependence
theory [4]. Game theory was born as a branch of economics
but has recently become a well-established framework in
MAS [13], as well as in computer science in general [8]. De-
pendence theory was born within the social sciences [5] and
brought into MAS by [4]. Although not having uniform for-
mulation, and still lacking thorough formal foundations, its
core ideas made their way into several researches in MAS
(e.g., [1, 15]).

The paper moves from the authors’ impression that, within
the MAS community, dependence theory and game theory
are erroneously considered to be alternative, when not in-
compatible, paradigms for the analysis of social interaction.
An impression that has recently been reiterated during the
AAMAS’2009 panel discussion “Theoretical Foundations for
Agents and MAS: Is Game Theory Sufficient?". It is our con-
viction that the theory of games and that of dependence are
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highly compatible endeavours. By relating the two theories
in a unified formal setting, the following research objectives
are met: i) dependence theory can tap into the highly de-
veloped mathematical framework of game theory, obtaining
the sort of mathematical foundations that it is still missing;
ii) game theory can incorporate a dependence-theoretic per-
spective on the analysis of strategic interaction.

With respect to this latter point, the paper shows that de-
pendence theory can play a precise role in games by modeling
a way in which cooperation arises in strategic situations:

“As soon as there is a possibility of choosing with
whom to establish parallel interests, this becomes
a case of choosing an ally. [. . . ] One can also
state it this way: A parallelism of interests makes
a cooperation desirable, and therefore will prob-
ably lead to an agreement between the players
involved." [16, p. 221]

Once this intuitive notion of “parallelism of interests" is taken
to mean “mutual dependence" [4] or “dependence cycle" [15]
the bridge is laid and the notion of agreement that stems from
it can be fruitfully analyzed in dependence-theoretic terms.

The paper is structured as follows. Section 2 briefly in-
troduces dependence theory and some notions and termi-
nology of game theory. The section points also at the few
related works to be found in the literature. Section 3 gives
a game-theoretic semantics to statements of the type “i de-
pends on j for achieving an outcome s." Most importantly,
the section relates cycles and equilibrium points in games
(Theorem 1) giving a formal game-theoretic argument for the
centrality of cycles in dependence theory. Section 4 connects
cycles to the possibility of agreements among players and
introduces a way to order them. Maximal agreements in
such ordering are, in Section 4.3, related to the core of corre-
sponding coalitional games where, following the intuition of
the above quote, coalitions form from dependence cycles via
agreements (Theorem 2). Conclusions follow in Section 5.

2. PRELIMINARIES
The section is devoted to the introduction of the conceptual

and technical apparatus that will be dealt with in the paper.
Relevant and related literature is also pointed at.

2.1 Dependence theory in a nutshell
Dependence theory has, at the moment, several versions

and no unified theory. There are mainly informal [3, 4] and
a few formal and computational [1, 14, 15] accounts. Yet,
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the aim of the theory is clear, and is best illustrated by the
following quote:

“One of the fundamental notions of social inter-
action is the dependence relation among agents. In
our opinion, the terminology for describing inter-
action in a multi-agent world in necessarily based
on an analytic description of this relation. Starting
from such a terminology, it is possible to devise
a calculus to obtain predictions and make choices
that simulate human behaviour" [4, p. 2].

So, dependence theory boils down to two issues: i) the identi-
fication (and representation) of dependence relations among
the agents in a system (to the nature of this relation we will
come back in Section 3); ii) the use of such information as
a means to obtain predictions about the behaviour of the
system. While all contributions to dependence theory have
focused on the first point, the second challenge, “devise a cal-
culus to obtain predictions", has been mainly left to computer
simulation [14]. When, in Section 1, we talked about provid-
ing formal foundations to dependence theory, we meant pre-
cisely this: find a suitable formal framework within which
dependence theory can be given analytical predictive power.
The paper shows in Section 4 that game theory can be used
for such a purpose.

2.2 A game-theory toolkit
We sketch some of the game theoretic notions we will be

dealing with in the paper. The reader is referred to [9] for a
more extensive exposition.

Definition 1 (Game). A (strategic form) game is a tupleG =
(N,S,Σi,�i, o) where: N is a set of players; S is a set of outcomes;
Σi is a set of strategies for player i ∈ N; �i is a total preorder1 over
S (its irreflexive part is denoted �i); o :

�
i∈N Σi → S is a bijective

function from the set of strategy profiles to S.2

Examples of games represented as payoff matrices are given
in Figure 1. A strategy profile will be denoted σ, while
strategies will be denoted as i-th projections of profiles, so
σi denotes an element of Σi. Following the usual convention,
σC = (σi)i∈C denotes the strategy |C|-tuple of the set of agents
C ⊆ N. Given a strategy profile σ and an agent i, we call
an i-variant of σ any profile which differs from σ at most for
σi, i.e., any profile (σ′i , σ−i) with σ′ possibly different from σ,
where −i = N\{i}. Similarly, a C-variant of σ is any profile
(σ′C, σC) with σ′ possibly different from σ where C = N\C. It
is assumed that (σN, σ∅) = (σN) = (σ∅, σN).

As to the solution concepts, we will work with Nash equi-
librium, which we will refer to also as best response equi-
librium (BR-equilibrium), and the dominant strategy equilib-
rium (DS-equilibrium).

Definition 2 (Equilibria). Let G be a game. A strategy
profile σ is: a BR-equilibrium (Nash equilibrium) iff ∀i, σ′ : σ �i
(σ′i , σ−i); it is a DS-equilibrium iff ∀i, σ′ : (σi, σ′−i) �i σ′.

So, a BR-equilibrium is a profile where all agents play a best
response and a DS-equilibrium is a profile where all agents
play a dominant strategy.
1A total preorder is a transitive and total relation. Recall that
a total relation is also reflexive.
2The definition could be dispensed with the outcome func-
tion. However, we chose for this presentation because it eases
the formulation of the results presented in Section 3.4.

L R
U 2, 2 0, 3
D 3, 0 1, 1

Prisoner’s dilemma

L R
U 3, 3 2, 2
D 2, 2 1, 1

Full Convergence

L R
U 1, 1 0, 0
D 0, 0 1, 1

Coordination

L R
U 3, 3 2, 2
D 2, 5 1, 1

Partial Convergence

Figure 1: Two players strategic games.

In addition to the games in strategic form (Definition 1)
we will also work with coalitional games, i.e., cooperative
games with non-transferable pay-offs abstractly represented
by effectivity functions. In this case our main references are
[7, 10].

Definition 3 (Coalitional game). A coalitional game is a
tuple C = (N,S,E,�i) where: N is a set of players; S is a set of
outcomes; E is function E : 2N → 22S ; �i is a total preorder on S.

Function E—effectivity function—assigns to every coalition
the sets of states that the coalition is able to enforce. In coali-
tional games, the standard solution concept is the core.

Definition 4 (The Core). Let C = (N,S,E,�i) be a coali-
tional game. We say that a state s is dominated in C if for some C
and X ∈ E(C) it holds that x �i s for all x ∈ X, i ∈ C. The core of
C, in symbols CORE(C) is the set of undominated states.

Intuitively, the core is the set of those states in the game that
are stable, i.e., for which there is no coalition that is at the
same time able and interested to deviate from them.

2.3 Games and dependencies in the literature
To the best of our knowledge, almost no attention has been

dedicated up till now to the relation between game theory
and dependence theory, with two noteworthy recent excep-
tions: [2], and [12] which is the last contribution of a line
of work starting with [1]. Although mainly motivated by
the objective of easing the computational complexity of com-
puting solution concepts in Boolean games [6], those works
pursue a line of research that has much in common with ours.
They study the type of dependence relations arising within
Boolean games and they relate them to solution concepts such
as Nash equilibrium and the core. In the present paper we
proceed in a similar fashion, although our main concern is,
instead of the application of dependence theory to the analy-
sis of games, the use of game theory as a formal underpinning
for dependence theory. As a consequence, our analysis needs
to shift from Boolean games to standard games.

3. DEPENDENCIES IN GAMES
It is now time to move to the presentation of our results.

The present section takes the primitive of dependence theory,
i.e., the relation “i depends on j for achieving goal g", and
defines it in game-theoretic terms.

3.1 Dependence as ‘need for a favour’
Let us start offwith a classic example [9].

Example 1 ( dilemma). Consider the Prisoner’s dilemma pay-
off matrix in Figure 1. As is well-know the outcome (D,R) is
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a dominant strategy equilibrium (and thus a Nash equilibrium).
To achieve this outcome in the game, it is fair to say that neither
Row depends on Column, nor vice versa. Players just play their
dominant strategies, they owe nothing to each other. What about
outcome (D,L)? Here the situation is clearly asymmetric. If this
outcome were to be achieved, Row would depend on Column in that,
while Row plays its dominant strategy, Column has to play a dom-
inated one which maximizes Row’s welfare. Same analysis, with
roles flipped, holds for (U,R). Asymmetry is broken in (U,L). If
this was the outcome to be selected, as we might expect, Row would
depend on Column and Column on Row since they both would
have to play a dominated strategy which maximizes the opponent’s
welfare.

The literature on dependence theory features a number of
different relations of dependency. Yet, in its most essential
form, a dependence relation is a relation occurring between
two agents i and j with respect to a certain state (or goal)
which i wants to achieve but which it cannot achieve without
some appropriate action of j.

“x depends on y with regard to an act useful for
realizing a state p when p is a goal of x’s and x is
unable to realize p while y is able to do so.” [4, p.4]

By taking a game theoretic perspective, this informal relation
acquires a precise and natural meaning: a player i depends
on a player j for the realization of a state p, i.e., of the strategy
profile σ such that o(σ) = p, when, in order for σ to occur, j
has to favour i, that is, it has to play in i’s interest. To put
it otherwise, i depends on j for σ when, in order to achieve
σ, j has to do a favour to i by playing σ j (which is obviously
not under i’s control).3 This intuition is made clear in the
following definition.

Definition 5 (Best for someone else). Assume a gameG =
(N,S,Σi,�i, o) and let i, j ∈ N. 1) Player j’s strategy in σ is a best
response for i iff ∀σ′, σ �i (σ′j, σ− j). 2) Player j’s strategy in σ is
a dominant strategy for i iff ∀σ′, (σ j, σ′− j) �i σ′.

Definition 5 generalizes the standard definitions of best re-
sponse and dominant strategy by allowing the player holding
the preference to be different from the player whose strategies
are considered. By setting i = j we obtain the usual defini-
tions. We are now in the position to mathematically define
the notion(s) of dependence as game theoretic notions.

Definition 6 (Dependence). Let G = (N,S,Σi,�i, o) be a
game and i, j ∈ N. 1) Player i BR-depends on j for strategy σ—in
symbols, iRBR

σ j—if and only if σ j is a best response for i in σ. 2)
Player i DS-depends on j for strategy σ—in symbols, iRDS

σ j—if
and only if σ j is a dominant strategy for i.

Intuitively, i depends on j for profile σ in a best response sense
if, in σ, j plays a strategy which is a best response for i given
the strategies in σ− j (and hence given the choice of i itself).
Similarly, i depends on j for profile σ in a dominant strategy
sense if j’s strategy in σ is the best j can do for maximizing i’s
welfare. We have thus obtained a notion of dependence with
a clear game theoretic meaning. Note that if iRDS

σ j then iRBR
σ j,

but not vice versa, as a dominant strategy for i is always a
best response for i.
3It might be worth noticing that while the notion of depen-
dence relation we use is a three-place one, in dependence
theory, it often has higher arity, incorporating ingredients
such as plans and actions (e.g. [15]).

(U,L)(U, R)

(D,R)(D,L)

Column Row ColumnRow

ColumnRow ColumnRow

Figure 2: BR-dependences in the Prisoner’s dilemma.

Therefore, with any game G two dependence structures
(N,RBR

σ ) and (N,RDS
σ )4 can be associated where σ ∈ �i∈N Σi.

Such structures, the one based on the notion of best response
and the other on the notion of dominant strategy, are multi-
graphs on the finite carrier N and containing a finite number
of binary relations, one for each possible profile of the game
G. They are a game theoretic formalization of the informal
notion of dependence described above. Figure 2 depicts the
BR-dependence structure of the game discussed in Example
1. So, for instance, the relation RBR

(U,L) depicted in the up-right
corner of Figure 2 is such that Column depends on itself (it
is a reflexive point), as it plays its own best response, and on
Row, as Row does not play its own best response but a best
response for Column.

In the Prisoner’s dilemma the RBR
σ and RDS

σ relations coin-
cide, that is, the BR- and DS-dependencies are equivalent. It
should be clear that this is not always the case, as the reader
can notice by considering the Coordination game in Figure
1. In such game no dominant strategy exists for any player
with respect to any player.

3.2 Relational vs. game-theoretic properties
In general, relations RBR

σ and RDS
σ do not enjoy any particular

structural property (e.g., reflexivity, completeness, transitiv-
ity, etc.). In the present section we study under what condi-
tions they come to enjoy particular properties. We consider
the two properties of reflexivity and universality,5 which will
be of use later in the paper.

Fact 1 (Properties of dependence relations). Let G be a
game and (N,Rx

σ) be its dependence structure with x ∈ {BR,DS}.
For any profile σ it holds that:

1. RBR
σ is reflexive iff σ is a BR-equilibrium;

2. RDS
σ is reflexive iff σ is a DS-equilibrium;

3. RBR
σ is universal iff ∀i, j ∈ N σi is a best response for j;

4. RDS
σ is universal iff ∀i, j ∈ N σi is a dominant strategy for j.

4We use this lighter notation instead of the heavier
(N, {RBR

σ }σ∈�i∈N Σi ) and (N, {RDS
σ }σ∈�i∈N Σi ).

5We recall that a relation R on domain N is reflexive if ∀x ∈ N,
xRx. It is universal if R is the Cartesian square of the domain,
i.e., R = N2. Obviously, if R is universal, it is also reflexive.
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g ¬g
g 3, 3, 3 2, 4, 2
¬g 4, 2, 2 1, 1, 0

g

g ¬g
g 2, 2, 4 0, 1, 1
¬g 1, 0, 1 1, 1, 1

¬g

Figure 3: A three person Prisoner’s dilemma.

Proof. [First claim:] From left to right, we assume that
∀i ∈ N, iRBR

σ i. From Definition 6, it follows that ∀i ∈ N,∀σ′ :
o(σ) �i o(σ′i , σ−i), that is, σ is a Nash equilibrium. From left
to right, we assume that σ is a Nash equilibrium. From this
it follows that ∀i ∈ N σi is a best response for i, from which
the reflexivity of RBR

σ follows by Definition 6. [Second claim:]
It can be proven in a similar way. [Third and fourth claims:]
The proof is by direct application of Definition 6.

Figure 1 provides neat examples of the claims listed in Fact
1. For instance, the first two claims are illustrated by profile
(D,R) in the Prisoner’s dilemma, which is both a Nash as
well as a dominant strategy equilibrium. The profile (U,L) of
the game Full Convergence is an instance of claim 3 whose
outcome is most preferred by all players. Finally, profiles
(U,L) and (D,R) in the Coordination game instantiate claim
4 by being the best profiles among all profiles that could
be obtained by a unilateral deviation of any of the players.
With respect to this, it is worth noticing that while (U,L) and
(D,R) in the Coordination game correspond to a universal
BR-dependence, the profile (D,R) in the Prisoner’s dilemma
only corresponds to a reflexive one.

3.3 Cycles
In the informal discussion of Example 1 we pointed at an es-

sential difference between the pair of profiles (D,R) and (U,L)
and the pair of profiles (D, L) and (U,R), namely the asym-
metry in the dependence structure that the last two exhibit
(see also Figure 2). For instance, in (D,L) Row BR-depends
on Column while Column does not BR-depend on Row.

The game-theoretic instability of the profiles can be viewed,
in dependence theoretic terms, as a lack of balance or reci-
procity in the corresponding dependence structure. Accord-
ing to [4], a dependence is reciprocal when it allows for the
occurrence of “social exchange", or exchange of favours, be-

(g, g, g) (¬g, g, g)

(¬g,¬g, g) (¬g,¬g,¬g)

1 2

3

1 2

1 2

1 2

3 3

3

Figure 4: Some BR-dependences of Example 2.

tween the agents involved. This happens in the presence of
cycles in the dependence relation [15]. In a cycle, the first
player of the cycle could be prone to do what the last player
asks since it can obtain something from the second player
who, in turn, can obtain something from the third and so on.

Definition 7 (Dependence cycles). Let G = (N,S,Σi,�i
, o) be a game, (N,Rx

σ) be its dependence structure for profile σ with
x ∈ {BR,DS}, and let i, j ∈ N. An Rx

σ-dependence cycle c of length
k − 1 in G is a tuple (a1, . . . , ak) such that: a1, . . . , ak ∈ N; a1 = ak;
∀ai, aj with 1 ≤ i � j < k, ai � aj; a1Rx

σa2Rx
σ . . .Rx

σak−1Rx
σak. Given

a cycle c = (a1, . . . , ak), its orbit O(c) = {a1, . . . , ak−1} denotes the
set of its elements.

In other words, cycles are sequences of pairwise different
agents, except for the first and the last which are equal, such
that all agents are linked by a dependence relation. Cycles
become of particular interest in games with more than two
players, so let us illustrate the definition by the following
example.

Example 2 (Cycles in three person games.). Consider the
following three-person variant of the Prisoner’s dilemma. A com-
mittee of three juries has to decide whether to declare a defendant
in a trial guilty or not. All the three juries want the defendant
to be found guilty, however, all three prefer that the others de-
clare her guilty while she declares her innocent. Also, they do
not want to be the only ones declaring her guilty if the other two
declare her innocent. They all know each other’s preferences. Fig-
ure 3 gives a payoff matrix for such game. Figure 4 depicts some
cyclic BR-dependencies inherent in the game presented. Player 1
is Row, player 2 Column, and player 3 picks the right or left table.
Among the ones depicted, the reciprocal profiles are clearly (g, g, g),
(¬g,¬g,¬g) (which is also universal) and (¬g, g, g), only the last
two of which are Nash equilibria (reflexive). Looking at the cycles
present in these BR-reciprocal profiles, we notice that (g, g, g) con-
tains the 2×3 cycles of length 3, all yielding the partition {{1, 2, 3}}
of the set of agents {1, 2, 3}. Profile (¬g, g, g), instead, yields two
partitions: {{1}, {2}, {3}} and {{1}, {2, 3}}. The latter is determined
by the cycles (1, 1) and (2, 3, 2) or (1, 1) and (3, 2, 3). Finally, profile
(¬g,¬g, g) is such that both 1 and 2 depend on 3. Yet, neither of
them plays a best response strategy.

Reciprocity obtains a formal definition as follows.

Definition 8 (Reciprocal profiles). Let G be a game and
(N,Rx

σ) be its dependence structure with x ∈ {BR,DS} and σ be a
profile. A profile σ is reciprocal if and only if there exists a partition
P(N) of N such that each element p of the partition is the orbit of
some Rx

σ-cycle.

So, a profile is reciprocal when the corresponding dependence
relation, be it a BR- or DS-dependence, clusters the agents
into non-overlapping groups whose members are all part of
some cycle of dependencies. Notice that the definition covers
‘degenerate’ cases such as the case of trivially reciprocal profiles
where cycles are of the type (i, i), i.e., whose orbit is a singleton
(cf. Fact 1). This is the case, for instance, in the (D,R) profile
in the Prisoner’s dilemma. Also, notice that several different
cycles can coexist. This is for instance the case in universal
dependence relations (cf. Fact 1). A profile yielding a cycle
with orbit N, e.g. (U,L) in the Prisoner’s dilemma, is called
fully reciprocal.

The literature on dependence theory stresses the existence
of cycles as the essential characteristic for a social situation
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L R
U 0, 0 1, 0
D 0, 1 1, 0

G

L R
0, 0 0, 1
1, 0 1, 0

Gμ

Figure 5: The two horsemen game and its permutation.

to give rise to some kind of cooperation. To say it with [1],
cycles formalize the possibility of social interaction between
agents of a do-ut-des (give-to-get) type. However, the fact that
cycles are prerequisite for cooperation is, in dependence the-
ory, normally taken for granted. The next section shows how
the importance of dependence cycles can be well understood
once game theory is taken into the picture.

3.4 Cycles as equilibria somewhere else
Consider a gameG = (N,S,Σi,�i, o) and a bijection μ : N �→

N. Theμ-permutation of gameG is the gameGμ = (N,S,Σμ,�i
, oμ) where for all i ∈ N, Σμi = Σμ(i) and the outcome function
oμ :

�
i∈N Σμ(i) → S is such that oμ(μ(σ)) = o(σ), with μ(σ)

denoting the permutation of σ according to μ. Intuitively, a
permuted game Gμ is therefore a game where the strategies
of each player are redistributed according to μ in the sense
that i’s strategies become μ(i)’s strategies, where agents keep
the same preferences over outcomes, and where the outcome
function assigns the same outcomes to the same profiles.

Example 3 (Two horsemen [11]). “Two horsemen are on a
forest path chatting about something. A passerby M, the mischief
maker, comes along and having plenty of time and a desire for
amusement, suggests that they race against each other to a tree a
short distance away and he will give a prize of $100. However,
there is an interesting twist. He will give the $100 to the owner of
the slower horse. Let us call the two horsemen Bill and Joe. Joe’s
horse can go at 35 miles per hour, whereas Bill’s horse can only go
30 miles per hour. Since Bill has the slower horse, he should get
the $100. The two horsemen start, but soon realize that there is a
problem. Each one is trying to go slower than the other and it is
obvious that the race is not going to finish. [. . . ] Thus they end up
[. . . ] with both horses going at 0 miles per hour. [. . . ] However,
along comes another passerby, let us call her S , the problem solver,
and the situation is explained to her. She turns out to have a clever
solution. She advises the two men to switch horses. Now each man
has an incentive to go fast, because by making his competitor’s horse
go faster, he is helping his own horse to win!" [11, p. 195-196].

Once we depict the game of the example as the left-hand
side game in Figure 5, we can view the second passerby’s
solution as a bijection μwhich changes the game to the right-
hand side version. Now Row can play Column’s moves and
Column can play Row’s moves. The result is a swap of (D, L)
with (U,R), since (D,L) in Gμ corresponds to (U,R) in G and
vice versa. On the other hand, (U,L) and (D,R) stay the
same, as the exchange of strategies do not affect them. As a
consequence, profile (D,R), in which both horsemen engage
in the race, becomes a dominant strategy equilibrium.

On the ground of these intuitions, we can obtain a simple
characterization of reciprocal profiles as equilibria in appro-
priately permuted games.

Theorem 1 (Reciprocity in equilibrium). LetG be a game
and (N,Rx

σ) be its dependence structure with x ∈ {BR,DS} and σ
be a profile. It holds that σ is x-reciprocal iff there exists a bijection
μ : N �→ N s.t. σ is a x-equilibrium in Gμ.

Proof. The theorem states two claims: one for x = BR and
one for x = DS. [First claim.] From left to right, assume
that σ is BR-reciprocal and prove the claim by constructing
the desired μ. By Definition 8 it follows that there exists a
partition P of N such that each element p of the partition is
the orbit of some RBR

σ -cycle. Given P, observe that any agent
i belongs to at most one member p of P. Now build μ so
that μ(i) outputs the successor j (which is unique) of i in the
cycle whose orbit is the p to which i belongs. Since each j
has at most one predecessor in a cycle, μ is an injection and
since domain and codomain coincide μ is also a surjection.
Now it follows that for all i, j, iRBR

σ j implies, by Definition 6,
that σμ(i) is a best response for i in σ. But in Gμ it holds that
σμ(i) ∈ Σi and since σ is reciprocal, by Definition 8, we have
that for all i σi is a best response in Gμ, and hence it is a Nash
equilibrium. From right to left, assume μ to be the bijection
at issue. It suffices to build the desired partition P from μ
by an inverse construction of the one used in the left to right
part of the claim. We set iRBR

σ j iff μ(i) = j. The definition is
sound w.r.t. Definition 6 because σ being a Nash equilibrium
we have that iRBR

σ j iff j plays a best response for i in σ. Since μ
is a bijection, it follows that RBR

σ contains cycles whose orbits
are disjoint and cover N. Therefore, by Definition 8, we can
conclude that σ is BR-reciprocal. [Second claim.] The proof
is similar to the proof of the first claim.

A profile is reciprocal if and only if it is an equilibrium—under
a given solution concept—in the game yielded by a realloca-
tion of the players’ strategy spaces, where the players keep
the same preferences of the original game. In a nutshell, a
reciprocal profile is nothing but an equilibrium after strategy
permutation. The following corollary is a direct consequence
of Theorem 1.

Corollary 1 (Trivially and fully reciprocal profiles).
Let G be a game and (N,Rx

σ) be its dependence structure with
x ∈ {BR,DS} and σ be a profile. It holds that:

1. σ is trivially x-reciprocal iff σ is an x-equilibrium inGμ where
μ is the identity;

2. σ is fully x-reciprocal iff σ is an x-equilibrium in Gμ where μ
is such that μ|N| is the identity,6 and for no n < |N| μn is the
identity.

The corollary makes explicit that: trivially reciprocal profiles
are the equilibria arising from the maintenance of the ‘sta-
tus quo’, so to say; and that fully reciprocal profiles are the
equilibria arising after the widest reallocation of strategies
possible.

From the foregoing results, it follows that permutations
can be fruitfully viewed as ways of implementing a recipro-
cal profile, where implementation has to be understood as a
way of transforming a game in such a way that the desirable
outcomes, in the transformed game, are brought about at an
equilibrium point.7

4. DEPENDENCY SOLVED: AGREEMENTS
We have seen in Section 1 that one of the original, and

yet unmet, objectives of dependence theory was to “devise a
calculus to obtain predictions" [4] of agents’ behaviour. The
6Function μ|N| is the |N|th iteration of μ.
7This is another way of looking at constrained mechanism design
as described in [13, Ch. 10.7] or, indeed, social software [11].
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U 2, 2 0, 3
D 3, 0 1, 1

Gμ

L R
2, 2 3, 0
0, 3 1, 1
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Figure 6: Agreements between the prisoners

present section shows how, by looking at dependence theory
the way we suggest, dependence structures lend themselves
to analytical predictions of the behaviour of the system to
which they pertain.

4.1 Agreements
Let us start with the definition of an agreement in our

dependence-theoretic setting.

Definition 9 (Agreements). LetG be a game, (N,Rx
σ) be its

dependence structure in σ with x ∈ {BR,DS}, and let i, j ∈ N. A
pair (σ, μ) is an x-agreement forG if σ is an x-reciprocal profile, and
μ a bijection which x-implements σ in G. The set of x-agreements
of a game G is denoted x-AGR(G).

Intuitively, an agreement, of BR or DS type, can be seen as
the result of agents’ coordination selecting a desirable out-
come and realizing it by an appropriate exchange of strate-
gies. In fact, a bijection μ formalizes a precise idea of social
exchange (see Section 2) in a game-theoretic setting. Notice
that, from Definition 8 it follows that the bijection μ of an
agreement (σ, μ) for a game G partitions N according to the
cyclical dependence structure (N,Rx

σ). Such partition, which
we call the partition of N induced by μ, is denoted Pμ(N).
Definition 9 is applied in the following example.

Example 4 (Permuting Prisoners). In the game Prisoner’s
Dilemma (Example 1) we observe two DS-agreements, whose per-
mutations give rise to the games depicted in Figure 6. Agree-
ment ((D,R), μ) with μ(i) = i for all players, is the standard DS-
equilibrium of the strategic game. But there is another possible
agreement, where the players swap their strategies: it is ((U,L), ν),
for which ν(i) = N\{i}. Here Row plays cooperatively for Col-
umn and Column plays cooperatively for Row. Of the same kind
is the agreement arising in Example 3. Notice that in such ex-
ample, the agreement is the result of coordination mediated by a
third party (the second passerby). Analogous considerations can
also be done about Example 2 where, for instance, ((g, g, g), μ) with
μ(1) = 2, μ(2) = 3, μ(3) = 1 is a BR- agreement.

Definition 9 has defined agreements with respect to both
notions of best response (BR-agreement) and dominant strat-
egy (DS-agreement). In the remaining of the paper we will
focus, for the sake of exposition, only on DS-agreements. So,
by ‘agreement’ we will mean, unless stated otherwise, DS-
agreement.

4.2 Ordering agreements
As there can be several possible agreements in a game, the

natural issue arises of how to order them and, in particu-
lar, of how to order them so that the maximal agreements,
with respect to such ordering, can be considered to be the
agreements that will actually be realized in the game.

A first candidate for such ordering could be Pareto domi-
nance. Such ordering on the agreements (σ, μ) would simply

be the same as the one defined on the profiles σ of the agree-
ments.8 However, we are interested in an ordering which
takes into consideration the fact that agreements can be strate-
gically taken by coalitions. To define the desired ordering that
takes strategic behaviour into account, we need the following
notion of C-candidate and C-variant agreements.

Definition 10 (C-candidates and C-variants). Let G =
(N,S,Σi,�i, o) be a game and C a non-empty subset of N. An
agreement (σ, μ) for G is a C-candidate if C is the union of some
members of the partition induced by μ, that is: C =

⋃
X where

X ⊆ Pμ(N). An agreement (σ, μ) for G is a C-variant of an
agreement (σ′, μ′) if σC = σ′C and μC = μ′C, where μC and μ′C
are the restrictions of μ to C. As a convention we take the set of
∅-candidate agreements to be empty and an agreement (σ, ν) to be
the only ∅-variant of itself.

In other words, an agreement (σ, μ) is a C-candidate if {C,C}
is a bipartition of Pμ(N), and it is a C-variant of (σ′, μ′) if it
differs from this latter at most in its C-part. It is instructive
to notice the following: if an agreement is a C-candidate, it
is also a C-candidate; all agreements are N-candidate; and
if an agreement is a C-variant of a C-candidate, it is also a
C-candidate. Finally, notice also that if (σ, μ) and (σ′, μ′) are
two C-candidate agreements, then ((σC, σ′C), (μC, μ′C)) is also
an agreement. We can now define the following notion of
dominance between agreements.

Definition 11 (Dominance). Let G = (N,S,Σi,�i, o) be a
game. An agreement (σ, μ) is dominated if for some coalition C
there exists a C-candidate agreement (σ′, μ′) for G such that for all
agreements (ρ, ν) which are C-variants of (σ′, μ′), o(ρ, ν) �i o(σ)
for all i ∈ C. The set of undominated agreements of G is denoted
DEP(G).

Intuitively, an agreement is dominated when a coalition C
can force all possible agreements to yield outcomes which
are better for all the members of the coalition, regardless of
what the rest of the players do, that is, regardless of the C-
variants of their agreements. To put it yet otherwise, the
members of coalition C can exploit the dependencies among
them creating a partial agreement (σC, μC) which suffices to
force the outcomes of the game to be all better than the ones
obtained via any other agreement.

Example 5 (Agreements with three players). In the three
person Prisoner’s dilemma drawn in Figure 3 and analyzed in Ex-
ample 2, the strategy profile (¬g,¬g,¬g) is a DS-equilibrium and
an agreement under the identity permutation μ while (¬g, g, g) is
an agreement under any permutation ν that induces a partition
{{1}, {2, 3}} on N. As can be checked, ((¬g,¬g,¬g), μ) is dom-
inated, since there exist a coalition C = {2, 3} and a C-candidate
agreement, namely ((¬g, g, g), ν), that has itself as only {1}-variant,
with o(¬g, g, g) �i o(¬g,¬g,¬g) for all i ∈ C.

4.3 Dependencies and coalitions
The previous sections have shown how to identify depen-

dences within games in strategic form. If such games are

8For completeness, here is the definition: Let G = (N,S,Σi,�i
, o) be a game. An agreement (σ, μ) for G is Pareto optimal
if for no agreement (σ′, μ′), o(σ′) Pareto dominates o(σ), i.e.,
¬∃σ′ s.t. ∀i ∈ N : o(σ′) �i o(σ).
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studied from the point of view of cooperative game theory—
along the lines of the quote from [16] given in Section 1—what
kind of cooperation is the one that arises based on reciprocal
dependences and agreements? In other words, what is the
place of dependencies within cooperative game theory?

We proceed as follows. First, starting from a game G, we
consider its representation CG as a coalitional game (Defi-
nition 12). Then we refine such representation, obtaining a
coalitional game CGDEP which captures the intuition that coali-
tions form only by means of agreements as they have been
defined in Definition 9. At this point we show that the core
of CGDEP coincides with the set of undominated agreements of
G (Theorem 2), thereby obtaining a game-theoretical charac-
terization of Definition 11.

So let us start with the definition of a cooperative game
obtained from a strategic form one (cf. [10]).

Definition 12 (Coalitional games from strategic ones).
Let G = (N,S,Σi,�i, o) be a game. The coalitional game CG =
(N,S,EG,�i) of G is a coalitional game where the effectivity func-
tion EG is defined as follows:

X ∈ EG(C)⇔ ∃σC∀σC o(σC, σC) ∈ X.

Roughly, the effectivity function of CG contains those sets in
which a coalition C can force the game to end up, no matter
what C does.

Definition 12 abstracts from dependence-theoretic consid-
erations. So, in order to be able to study what outcomes are
stable once we give to the players the power to form coalitions
via agreements, we have to define the effectivity function so
that the states for which a coalition is effective depend on the
agreements it can force.

Definition 13 (Dependence games from strategic ones).
Let G = (N,S,Σi,�i, o) be a game. The dependence (coalitional)
game CGDEP = (N,S,EGDEP,�i) of G is a coalitional game where the
effectivity function EGDEP is defined as follows:

X ∈ EGDEP(C) ⇔ ∃σC, μC s.t.
∃σC, μC : [((σC, σC), (μC, μC)) ∈ AGR(G)]
and [∀σC, μC : [((σC, σC), (μC, μC)) ∈ AGR(G)
implies o(σC, σC) ∈ X]].

where μ : N→ N is a bijection.

This somewhat intricate formulation states nothing but that
the effectivity function EGDEP(C) associates with each coalition
C the states which are outcomes of agreements (and hence of
reciprocal profiles), and which C can force via partial agree-
ments (σC, μC) regardless of the partial agreements (σC, μC) of
C. Whether agreements exist at all depends, obviously, on the
underlying gameG. The following fact compares Definitions
12 and 13.

Fact 2 (EG vs. EGDEP). It does not hold that for all G: EGDEP ⊆
EG; nor it holds that for all G: EG ⊆ EGDEP.

Proof. For the first inclusion consider a game G with tree
players 1, 2, 3 and two actions {a, b} for each of them. Suppose
the only possible agreement is the identity permutationμ(i) =
i and (a, a, a) is a DS-equilibrium. We have that {o(a, a, a)} ∈
EGDEP({1}) while {o(a, a, a)} � EG({1}). For the second inclu-
sion take G the Prisoner’s dilemma game in which {(U,L)} ∈
EG({Column,Row}) but {(U,L)} � EGDEP({Column,Row}).

The fact shows that dependence games are not just a refine-
ment of coalitional ones. Dependence-based effectivity func-
tions considerably change the powers of coalitions.

At this point two natural questions arise. First, given a
game G, what is the relation between the set DEP(G) (Defini-
tion 11) and the set CORE(CGDEP), i.e., the core of the depen-
dence game built from G? Second, along the lines of Fact 2,
what is the relation between the set CORE(CG) and the set
CORE(CGDEP), that is, what is the relation between the cores
of the coalitional and dependence games built on G? These
questions are answered by the two results below, but let us
first point at some differences between coalitional games and
dependence games by means of an example.

Example 6 (core in coalitional vs. dependence games).
The core of the coalitional game and of the dependence game built on
the Prisoner’s dilemma game (Figure 1) coincide and are {o(U,L)},
i.e., the cooperative outcome. Take G to be the Prisoner’s dilemma
game. That CORE(CG) = {o(U,L)} is clear, as there exists no
coalition C that can force a set of outcomes which are all better for
all members of C. That CORE(CGDEP) = {o(U,L)} is a little sub-
tler. As shown in Example 4, there are two possible agreements
in the Prisoner’s dilemma: the cooperative one leading to the fully
DS-reciprocal profile, and the identity one, leading to the trivially
DS-reciprocal profile. These profiles are the only ones that can
be forced by the possible coalitions, and clearly o(U,L) dominates
o(D,R).

Theorem 2 (DEP vs. CORE). Let G = (N,S,Σi,�i, o) be a
game. It holds that, for all agreements (σ, μ):

(σ, μ) ∈ DEP(G) ⇔ o(σ) ∈ CORE(CGDEP).

where μ : N→ N is a bijection.
Proof. [Left to right:] By contraposition, assume o(σ) �

CORE(CGDEP). By Definition 4 this means that ∃C ⊆ N,X ∈
EGDEP(C) s.t. x �i o(σ) for all i ∈ C, x ∈ X. Applying Definition
13 we obtain that there exists an agreement ((σ′C, σ

′
C

), (μ′C, μ
′
C

))
s.t. ∀σ′

C
, μ′

C
, o(σ′C, σ

′
C

) ∈ X and s.t. x �i o(σ) for all i ∈ C, x ∈ X.
Now, ((σ′C, σ

′
C

), (μ′C, μ
′
C

)) is obviously C-candidate, and all its
C-variants yield better outcomes for C than σ. Hence, by
Definition 11,(σ, μ) � DEP(G). [Right to left:] Notice that the
set up of Definition 11 implies that, if (σ, μ) is dominated,
then any other agreement for σwould also be dominated. So,
by contraposition, assume (σ, μ) � DEP(G). By Definition 11,
we obtain that there exists a C-candidate agreement (σ′, μ′)
for G such that for all agreements (ρ, ν) which are C-variants
of (σ′, μ′), o(ρ, ν) �i o(σ) for all i ∈ C. But this means, by
Definition 13, that ∃C,X such that X ∈ EGDEP(C) and x �i
o(σ) for all x ∈ C. Hence, by Definition 4, we obtain σ �
CORE(CGDEP).

Intuitively, an agreement for a game G is undominated if
and only if the outcome of its profile lies in the core of the
dependence game built on G.9 To put it yet otherwise, The-
orem 2 states that, given a game G and agreement (σ, μ), the
permuted game Gμ where σ is a DS-equilibrium (cf. Theo-
rem 1) lying in DEP(G), if and only if σ is in the core of the
dependence game of G.
9Notice also that, as a consequence of Theorem 2, the ex-
istence of undominated agreements guarantees the non-
emptyness of the core. Notice that the converse need not
hold as undominated outcomes need not be the result of
agreements.
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Fact 3 (CORE(CG) vs. CORE(CGDEP)). It does not hold that
for all G: CORE(CG) ⊆ CORE(CGDEP); nor it holds that for all G:
CORE(CGDEP) ⊆ CORE(CG) .

Proof. For the first inclusion, take G to be the Partial Con-
vergence Game in Figure 1. While the outcome o(D,L) be-
longs to CORE(CG), it does not belong to CORE(CGDEP). The
strategy profile (U,L) is an agreement under the identity per-
mutation and it is the only Column-variant of itself. Even
though o(D,L) �Column o(U,L), playing U is dominant strategy
for Row and playing L is dominant strategy for Column. The
only possible agreement under the identity permutation is
not an optimal outcome for Column. As can be observed,
Row can reach an agreement with the identity permutation,
successfully deviating from (D, L). For the converse inclu-
sion, take G to be the Coordination game (Figure 1). Then
CORE(CG) = {o(U,L), o(D,R)} while CORE(CGDEP) contains all
the four possible outcomes, simply because there is no DS-
agreement in such game, hence no possible coalition.

With this result at hand we can observe that dependence
structures carry out a different—and alternative—notion of
stability from the one usually studied in cooperative games.

4.4 Discussion
The results presented in the previous section hinge on the

notion of agreement intended as DS-agreement. Variants of
the above results can be obtained also for BR-agreements.

It is moreover worth stressing that Definition 11, and its
corresponding game-theoretic notion of core in dependence
games, is just one possible candidate for the formalization
of a notion of ‘stability’ of agreements. Other notions of
dominance among agreements can be isolated and related
to solution concepts in coalitional games just like we did in
Theorem 2. To give an example, an arguably natural candi-
date for a notion of ‘stability’ for agreements is the following
one, which we call Nash agreement. An agreement (σ, μ) for
G is Nash if and only if there exists no C ⊆ N, and agree-
ment (σ′, μ′) such that (σ′, μ′) is a C-variant of (σ, μ) and, for
all i ∈ C, o(σ′) �i o(σ). The question is then: can we build
a (coalitional) game, based on G, and single out an appro-
priate solution concept such that the solution of that game
corresponds to the set of Nash agreements of G?

Finally, alternatives to the definition of agreements are also
possible, and perhaps desirable. Agreements have been for-
malized here using permutations onto the set N. An alter-
native path to take is the use of partial agreements as only
admissible coalitional strategies, allowing for permutations
onto subsets of N. This should guarantee the core of the
coalitional game to be included in the core of the dependence
game so constructed (cf. Fact 3).

These particular research issues are left for future work.
What we want to stress, however, is that a series of results
of this kind could set the boundaries of dependence theory
within the theory of games, thereby giving it a well-defined
‘own’ place and, at the same time, allow it to fruitfully tap
into the mathematics of game theory.

5. CONCLUSIONS
The contribution of the paper is two-fold. On the one hand

it has been shown that central dependence-theoretic notions
such as the notion of cycle are amenable to a game-theoretic
characterization (Theorem 1). On the other hand dependence

theory has been demonstrated to give rise to types of coop-
erative games where solution concepts such as the core can
be applied to obtain the sort of ‘analytical predictive power’
that dependence theory unsuccessfully looked for since its
beginnings [4] (Theorem 2). All in all, we hope that the paper
has given a glimpse of the type of fruitful interactions that
we can expect from a formal unification of the two theories.
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